Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 118: 423-436, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467381

RESUMO

Gut inflammation can trigger neuroinflammation and is linked to mood disorders. Microbiota-derived short-chain fatty acids (SCFAs) can modulate microglia, yet the mechanism remains elusive. Since microglia do not express free-fatty acid receptor (FFAR)2, but intestinal epithelial cells (IEC) and peripheral myeloid cells do, we hypothesized that SCFA-mediated FFAR2 activation within the gut or peripheral myeloid cells may impact microglia inflammation. To test this hypothesis, we developed a tamoxifen-inducible conditional knockout mouse model targeting FFAR2 exclusively on IEC and induced intestinal inflammation with dextran sodium sulfate (DSS), a well-established colitis model. Given FFAR2's high expression in myeloid cells, we also investigated its role by selectively deleting it in these populations of cells. In an initial study, male and female wild-type mice received 0 or 2% DSS for 5d and microglia were isolated 3d later to assess inflammatory status. DSS induced intestinal inflammation and upregulated inflammatory gene expression in microglia, indicating inflammatory signaling via the gut-brain axis. Despite the lack of significant effects of sex in the intestinal phenotype, male mice showed higher microglial inflammatory response than females. Subsequent studies using FFAR2 knockout models revealed that FFAR2 expression in IECs or immune myeloid cells did not affect DSS-induced colonic pathology (i.e. clinical and histological scores and colon length), or colonic expression of inflammatory genes. However, FFAR2 knockout led to an upregulation of several microglial inflammatory genes in control mice and downregulation in DSS-treated mice, suggesting that FFAR2 may constrain neuroinflammatory gene expression under healthy homeostatic conditions but may permit it during intestinal inflammation. No interactions with sex were observed, suggesting sex does not play a role on FFAR2 potential function in gut-brain communication in the context of colitis. To evaluate the role of FFAR2 activated by microbiota-derived SCFAs, we employed the same knockout and DSS models adding fermentable dietary fiber (0 or 2.5% inulin for 8 wks). Despite no genotype or fiber main effects, contrary to our hypothesis, inulin feeding augmented DSS-induced inflammation and signs of colitis, suggesting context-dependent effects of fiber. These findings highlight microglial involvement in colitis-associated neuroinflammation and advance our understanding of FFAR2's role in the gut-brain axis. Although not integral, we observed that the role of FFAR2 differs between homeostatic and inflammatory conditions, underscoring the need to consider different inflammatory conditions and disease contexts when investigating the role of FFAR2 and SCFAs in the gut-brain axis.


Assuntos
Colite , Microglia , Animais , Feminino , Masculino , Camundongos , Colo/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Células Epiteliais/patologia , Inflamação/metabolismo , Inulina/efeitos adversos , Inulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides , Doenças Neuroinflamatórias , Receptores Acoplados a Proteínas G/metabolismo
2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38417056

RESUMO

Ganoderma lucidum (GL) is a mushroom that has been widely used in Asia for its immunostimulatory and anti-inflammatory capacity, which has been hypothesized to be attributed mainly to the recognition of its cell-surface patterns by cells of the immune system present in the gastrointestinal tract, resulting in a cascade of modulatory events. However, the nutraceutical properties of GL have not been tested in dogs. Forty adult beagles were used in a completely randomized design. The objective of the present study was to evaluate the effects of dietary inclusion of GL on peripheral blood mononuclear cells (PBMC; T cells, B cells, monocytes, and natural killers), vaccine response, nutrient digestibility, fecal fermentative end-products, and skin and coat quality of adult dogs. Dogs were fed a commercial dry extruded complete and balanced diet plus GL top-dressed daily upon feeding time. Four experimental treatments were used: 0% GL supplementation (control), 5 mg/kg BW of GL, 10 mg/kg BW of GL, or 15 mg/kg BW of GL. Following a 7 d adaptation to the control diet, dogs were fed their respective treatment diets for 28 d. They were challenged with vaccination of a modified live virus Canine Distemper, Adenovirus Type 1 (Hepatitis), Adenovirus Type 2, Parainfluenza, and Parvovirus and killed Rabies Virus on day 7 with blood collections on days 0, 14, and 28. The inclusion of GL in all dosages was well-accepted by all dogs, with no detrimental effect on macronutrient apparent total tract digestibility. There was a trend that the percentage of major histocompatibility II (MHC-II) from B cells was greater in dogs fed 15 mg/kg of GL (41.91%) compared to the control group (34.63%). The phagocytosis response tended to have treatment-by-time interaction among treatments; dogs fed 15 mg/kg of GL tended to have greater phagocytosis activity on day 28 than dogs from the control group and dogs fed 5 mg/kg of GL. The vaccine-specific serum immunoglobulin G (IgG) concentrations were higher in the group supplemented with 15 mg/kg of GL compared to treatment control 7 d after the vaccination for rabies. These data suggest that the inclusion of GL had no detrimental effects on any analyzed PBMC. Due to changes in immune parameters among treatments, GL may also exert beneficial immunostimulatory effects in healthy adult dogs when provided at a daily dose of 15 mg/ kg BW.


Ganoderma lucidum (GL) is a fungus from which products have become popular in the human food and health industry over the past decade. Due to this, a growing interest in using GL extracts in animal products has also developed. The current study investigated the nutritional properties of GL supplemented to adult beagles in three different inclusion levels in terms of body weight (BW; 5, 10, and 15 mg/kg BW). The results indicated no impact on the overall health, apparent total tract macronutrient digestibility (ATTD), fecal microbial DNA, and skin and coat health. The highlighted results included increased phagocytic activity and vaccine-specific response in the group of dogs supplemented with 15 mg/kg BW.


Assuntos
Reishi , Vacinas , Cães , Animais , Digestão , Leucócitos Mononucleares , Fezes , Dieta/veterinária , Suplementos Nutricionais , Ração Animal/análise
3.
J Neuroinflammation ; 20(1): 190, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37596606

RESUMO

BACKGROUND: Recent data suggest that myelin may be altered by physiological events occurring outside of the central nervous system, which may cause changes to cognition and behavior. Similarly, peripheral infection by non-neurotropic viruses is also known to evoke changes to cognition and behavior. METHODS: Mice were inoculated with saline or influenza A virus. Bulk RNA-seq, lipidomics, RT-qPCR, flow cytometry, immunostaining, and western blots were used to determine the effect of infection on OL viability, protein expression and changes to the lipidome. To determine if microglia mediated infection-induced changes to OL homeostasis, mice were treated with GW2580, an inhibitor of microglia activation. Additionally, conditioned medium experiments using primary glial cell cultures were also used to test whether secreted factors from microglia could suppress OL gene expression. RESULTS: Transcriptomic and RT-qPCR analyses revealed temporal downregulation of OL-specific transcripts with concurrent upregulation of markers characteristic of cellular stress. OLs isolated from infected mice had reduced cellular expression of myelin proteins compared with those from saline-inoculated controls. In contrast, the expression of these proteins within myelin was not different between groups. Similarly, histological and immunoblotting analysis performed on various brain regions indicated that infection did not alter OL viability, but increased expression of a cellular stress marker. Shot-gun lipidomic analysis revealed that infection altered the lipid profile within the prefrontal cortex as well as in purified brain myelin and that these changes persisted after recovery from infection. Treatment with GW2580 during infection suppressed the expression of genes associated with glial activation and partially restored OL-specific transcripts to baseline levels. Finally, conditioned medium from activated microglia reduced OL-gene expression in primary OLs without altering their viability. CONCLUSIONS: These findings show that peripheral respiratory viral infection with IAV is capable of altering OL homeostasis and indicate that microglia activation is likely involved in the process.


Assuntos
Influenza Humana , Lipidômica , Animais , Camundongos , Humanos , Meios de Cultivo Condicionados , Oligodendroglia , Homeostase
4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37208000

RESUMO

The objective of this study was to measure the effects of a Lactobacillus fermentation product (LBFP) on fecal characteristics and microbiota, blood biomarkers, immune function, and serum oxidative stress markers of adult dogs. Thirty adult beagle dogs [23 M, 7 F; mean age = 8.47 ± 2.65 yr old; mean BW = 15.43 ± 4.17 kg] were used in a completely randomized design study. All dogs were fed a basal diet to maintain BW for 5 wk, followed by baseline blood and fecal sample collections. Dogs remained on the same diet, but then were randomly assigned to a placebo (dextrose) or LBFP supplement (Limosilactobacillus fermentum and Lactobacillus delbrueckii). Both treatments were dosed at 4 mg/kg BW via gelatin capsule for 5 wk (n = 15/treatment). Fecal and blood samples were collected at that time. Change from baseline data were analyzed using the Mixed Models procedure of SAS 9.4, with P < 0.05 being significant and P < 0.10 being trends. Most circulating metabolites and immunoglobulins (Ig) were unaltered by treatment, but LBFP-supplemented dogs had lower changes in serum corticosteroid isoenzyme of alkaline phosphatase (P < 0.05), alanine aminotransferase (P < 0.10), and IgM (P < 0.10) than controls. The change in fecal scores tended to be lower (P = 0.068) in LBFP-supplemented dogs than controls, signifying firmer feces in LBFP-supplemented dogs. Regarding the fecal microbiota, alpha diversity indicators tended to be higher (P = 0.087) in LBFP-supplemented dogs than controls. One fecal bacterial phylum (Actinobacteriota) was altered by treatments, with its relative abundance tending to have a greater (P < 0.10) increase in controls than LBFP-supplemented dogs. Fifteen bacterial genera were altered (P < 0.05 or P < 0.10) by treatments, including relative abundances of fecal Peptoclostridium, Sarcina, and Faecalitalea that had a greater (P < 0.05) increase in controls than LBFP-supplemented dogs. In contrast, relative abundances of fecal Faecalibaculum, Bifidobacterium, and uncultured Butyricicoccaceae had a greater (P ≤ 0.05) increase in LBFP-supplemented dogs than controls. After week 5, dogs underwent transport stress (45-min vehicle ride) to assess oxidative stress markers. The change in serum superoxide dismutase after transport had a greater (P < 0.0001) increase in LBFP-supplemented dogs than controls. Our data suggest that LBFP may provide benefits to dogs by stabilizing stool quality, beneficially shifting fecal microbiota, and protecting against oxidative damage when subjected to stress.


Our objective was to measure the effects of a Lactobacillus fermentation product (LBFP) on fecal characteristics and microbiota, immune function, and oxidative stress markers of dogs. Thirty adult dogs were used in a completely randomized design study. All dogs were fed a basal diet to maintain body weight for 5 wk and then randomly assigned to a placebo or LBFP supplement for five more weeks. Fecal and blood samples were collected after baseline and treatment phases. Change from baseline data were analyzed statistically. Most blood markers were unaltered by treatment, but LBFP-supplemented dogs had lower changes in liver enzymes and IgM than controls. Change in fecal scores tended to be lower in LBFP-supplemented dogs than controls, signifying firmer feces. Fecal bacterial alpha diversity tended to be higher in LBFP-supplemented dogs than controls. One fecal bacterial phylum and 15 bacterial genera were altered by treatments. After 5 wk, dogs underwent transport stress (45-min vehicle ride) to assess oxidative stress markers. The increase in serum superoxide dismutase after transport was greater in LBFP-supplemented dogs than controls. Our data suggest that LBFP may provide benefits to dogs by stabilizing stool quality, beneficially shifting fecal microbiota, and protecting against oxidative damage when undergoing stress.


Assuntos
Dieta , Lactobacillus , Cães , Animais , Fermentação , Fezes/microbiologia , Dieta/veterinária , Imunidade , Ração Animal/análise
5.
J Biol Chem ; 299(2): 102886, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36626985

RESUMO

Epidemiological studies show that omega-3 fatty acid consumption is associated with improved conditions in neurodegenerative diseases such as multiple sclerosis (MS). However, the mechanism of this association is not well understood. Emerging evidence suggests that parent molecules such as docosahexaenoic acid are converted into downstream metabolites that are capable of directly modulating immune responses. In vitro, we found that docosahexaenoyl ethanolamide (DHEA), another dietary component and its epoxide metabolite, reduced the polarization of naïve T-cells toward proinflammatory Th1 and Th17 phenotypes. Furthermore, we identified that DHEA and related endocannabinoids are changing during the disease progression in mice undergoing relapse-remitting experimental autoimmune encephalomyelitis (RR-EAE). In addition, daily administration of DHEA to mice delayed the onset of disease, the rate of relapse, and the severity of clinical scores at relapse in RR-EAE, an animal model of MS. Collectively, these data indicate that DHEA and their downstream metabolites reduce the disease severity in the RR-EAE model of MS and can be potential dietary adjuvants to existing MS therapeutics.


Assuntos
Ácidos Docosa-Hexaenoicos , Encefalomielite Autoimune Experimental , Animais , Camundongos , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Endocanabinoides/metabolismo , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Recidiva , Progressão da Doença , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos
6.
J Anim Sci ; 100(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36044986

RESUMO

Feeding Saccharomyces cerevisiae fermentation product (SCFP) has previously altered fecal microbiota, fecal metabolites, and immune function of adult dogs. The objective of this study was to investigate measures of skin and coat health, changes in circulating immune cell numbers and activity, antioxidant status, and oxidative stress marker concentrations of healthy adult dogs fed a SCFP-supplemented extruded diet. Sixteen adult English Pointer dogs (8 M, 8 F; mean age = 6.7 ± 2.1 yr; mean BW = 25.9 ± 4.5 kg) were used in a randomized crossover design study. All dogs were fed a control diet for 4 wk, then randomly assigned to either the control or SCFP-supplemented diet (0.13% of active SCFP) and fed to maintain BW for 10 wk. A 6-wk washout preceded the second 10-wk experimental period with dogs receiving opposite treatments. After baseline/washout and treatment phases, skin and coat were scored, and pre and postprandial blood samples were collected. Transepidermal water loss (TEWL), hydration status, and sebum concentrations were measured (back, inguinal, ear) using external probes. Oxidative stress and immune cell function were measured by ELISA, circulating immune cell percentages were analyzed by flow cytometry, and mRNA expression of oxidative stress genes was analyzed by RT-PCR. Change from baseline data was analyzed using the Mixed Models procedure of SAS 9.4. Sebum concentration changes tended to be higher (P < 0.10; inguinal, ear) in SCFP-fed dogs than in controls. TEWL change was lower (P < 0.05) on the back of controls, but lower (P = 0.054) on the ear of SCFP-fed dogs. Delayed-type hypersensitivity response was affected by diet and time post-inoculation. Other skin and coat measures and scores were not affected by diet. Changes in unstimulated lymphocytes and stimulated IFN-γ secreting T cells were lower (P < 0.05) in SCFP-fed dogs, while changes in stimulated T cells were lower (P < 0.05) in control-fed dogs. Upon stimulation, the percentage of cytotoxic T cells delta trended lower (P < 0.10) in SCFP-fed dogs. Change in serum superoxide dismutase concentrations was higher (P < 0.05) and change in catalase mRNA expression was lower (P < 0.05) in SCFP-fed dogs. All other measurements of immune cell populations, oxidative stress markers, and gene expression were unaffected by treatment. In conclusion, our data suggest that SCFP positively impacts indicators of skin and coat health of dogs, modulates immune responses, and enhances some antioxidant defense markers.


Saccharomyces cerevisiae fermentation product (SCFP) is a yeast product containing bioactive fermentation metabolites, residual yeast cells, and yeast cell wall fragments. In this study, SCFP was investigated for its impacts on immune health, oxidative stress, and skin and hair coat health in dogs. Using a randomized crossover study design, 16 adult pointer dogs were used to compare changes in immune cell numbers and activity, antioxidant status and oxidative stress marker concentrations, and skin and coat health markers when fed a SCFP-supplemented diet or control diet. Skin sebum concentrations increased in dogs fed SCFP, but transepidermal water loss changes depended on body location (ear, inguinal, or back). Delayed-type hypersensitivity response was affected by diet and time. Changes in unstimulated lymphocytes and stimulated IFN-γ secreting T cells were lower in SCFP-fed dogs, while changes in stimulated T cells were lower in control dogs. Changes in stimulated cytotoxic T cells tended to be lower in SCFP-fed dogs. Change in serum superoxide dismutase concentrations were higher, while change in catalase mRNA expression was lower in SCFP-fed dogs. In conclusion, our data suggest that SCFP positively impacts indicators of skin and coat health of dogs, modulates immune responses, and enhances some key antioxidant defense markers.


Assuntos
Dieta , Saccharomyces cerevisiae , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Dieta/veterinária , Cães , Fermentação , Estresse Oxidativo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo
7.
Front Nutr ; 9: 835824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360677

RESUMO

With increasing age, microglia shift toward a pro-inflammatory phenotype that may predispose individuals to neurodegenerative disease. Because fiber fermentation in the colon produces bioactive short-chain fatty acids (SCFAs; e.g., acetate, butyrate, and propionate) that signal through the gut-brain axis, increasing dietary fiber may prevent or reverse age-related dysregulation of microglia. Adult (3-4 months old) and aged (23-24 months old) male and female mice were given ad libitum access to a modified AIN-93M diet with 1% cellulose or the same diet with 2.5 or 5.0% inulin for 8 weeks. Several adult and aged male mice fed 0 or 5% inulin were randomly selected for whole brain single-cell RNA sequencing (scRNA-seq) and differential gene expression analysis to classify brain microglia according to gene expression profile; and identify additional genetic markers of aging as possible targets for dietary interventions. Microglia were isolated from remaining mice and expression of selected aging-, inflammatory-, and sensome-related genes was assessed by Fluidigm as was the ex vivo secretion of tumor necrosis factor-alpha (TNF-α). SCFAs were measured in samples collected from the cecum. Microglia from adult and aged mice segregated into distinct phenotypes according to their gene expression profile. In aged mice, a considerably greater proportion of the population of microglia was identified being "activated" and a considerably smaller proportion was identified being "quiescent." These findings using whole brain scRNA-seq were largely corroborated using highly purified microglia and Fluidigm analysis to assess a selected panel of genes. Aged mice compared to adults had lower levels of SCFA's in cecum. Dietary inulin increased SCFAs in cecum and mostly restored microglial cell gene expression and TNF-α secretion to that seen in adults. Sex differences were observed with females having lower levels of SCFAs in cecum and increased neuroinflammation. Overall, these data support the use of fiber supplementation as a strategy to counterbalance the age-related microglial dysregulation.

8.
Front Immunol ; 12: 734349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899694

RESUMO

Microglia activation and proliferation are hallmarks of many neurodegenerative disorders and may contribute to disease pathogenesis. Neurons actively regulate microglia survival and function, in part by secreting the microglia mitogen interleukin (IL)-34. Both IL-34 and colony stimulating factor (CSF)-1 bind colony stimulating factor receptor (CSFR)1 expressed on microglia. Systemic treatment with central nervous system (CNS) penetrant, CSFR1 antagonists, results in microglia death in a dose dependent matter, while others, such as GW2580, suppress activation during disease states without altering viability. However, it is not known how treatment with non-penetrant CSF1R antagonists, such as GW2580, affect the normal physiology of microglia. To determine how GW2580 affects microglia function, C57BL/6J mice were orally gavaged with vehicle or GW2580 (80mg/kg/d) for 8 days. Body weights and burrowing behavior were measured throughout the experiment. The effects of GW2580 on circulating leukocyte populations, brain microglia morphology, and the transcriptome of magnetically isolated adult brain microglia were determined. Body weights, burrowing behavior, and circulating leukocytes were not affected by treatment. Analysis of Iba-1 stained brain microglia indicated that GW2580 treatment altered morphology, but not cell number. Analysis of RNA-sequencing data indicated that genes related to reactive oxygen species (ROS) regulation and survival were suppressed by treatment. Treatment of primary microglia cultures with GW2580 resulted in a dose-dependent reduction in viability only when the cells were concurrently treated with LPS, an inducer of ROS. Pre-treatment with the ROS inhibitor, YCG063, blocked treatment induced reductions in viability. Finally, GW2580 sensitized microglia to hydrogen peroxide induced cell death. Together, these data suggest that partial CSF1R antagonism may render microglia more susceptible to reactive oxygen and nitrogen species.


Assuntos
Anisóis/farmacologia , Encéfalo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Pirimidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo
9.
Evol Bioinform Online ; 17: 1176934321989695, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33551640

RESUMO

The SARS-CoV-2 virus that causes the COVID-19 disease has spread quickly and massively around the entire globe, causing millions of confirmed cases and deaths worldwide. The disease poses a serious ongoing threat to public health. This study aims to understand the disease potential of the virus in different regions by studying how average spring temperature and its strong predictor, latitude, affect epidemiological variables such as disease incidence, mortality, recovery cases, active cases, testing rate, and hospitalization. We also seek to understand the association of temperature and geographic coordinates with viral genomics. Epidemiological data along with temperature, latitude, longitude, and preparedness index were collected for different countries and US states during the early stages of the pandemic. Our worldwide epidemiological analysis showed a significant correlation between temperature and incidence, mortality, recovery cases and active cases. The same tendency was found with latitude, but not with longitude. In the US, we observed no correlation between temperature or latitude and epidemiological variables. Interestingly, longitude was correlated with incidence, mortality, active cases, and hospitalization. An analysis of mutational change and mutational change per time in 55 453 aligned SARS-CoV-2 genome sequences revealed these parameters were uncorrelated with temperature and geographic coordinates. The epidemiological trends we observed worldwide suggest a seasonal effect for the disease that is not directly controlled by the genomic makeup of the virus. Future studies will need to determine if correlations are more likely the result of effects associated with the environment or the innate immunity of the host.

10.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33597297

RESUMO

Multiple sclerosis (MS) is a chronic neurological disease of the central nervous system driven by peripheral immune cell infiltration and glial activation. The pathological hallmark of MS is demyelination, and mounting evidence suggests neuronal damage in gray matter is a major contributor to disease irreversibility. While T cells are found in both gray and white matter of MS tissue, they are typically confined to the white matter of the most commonly used mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Here, we used a modified EAE mouse model (Type-B EAE) that displays severe neuronal damage to investigate the interplay between peripheral immune cells and glial cells in the event of neuronal damage. We show that CD4+ T cells migrate to the spinal cord gray matter, preferentially to ventral horns. Compared to CD4+ T cells in white matter, gray matter-infiltrated CD4+ T cells were mostly immobilized and interacted with neurons, which are behaviors associated with detrimental effects to normal neuronal function. T cell-specific deletion of CXCR2 significantly decreased CD4+ T cell infiltration into gray matter in Type-B EAE mice. Further, astrocyte-targeted deletion of TAK1 inhibited production of CXCR2 ligands such as CXCL1 in gray matter, successfully prevented T cell migration into spinal cord gray matter, and averted neuronal damage and motor dysfunction in Type-B EAE mice. This study identifies astrocyte chemokine production as a requisite for the invasion of CD4+T cell into the gray matter to induce neuronal damage.


Assuntos
Astrócitos/patologia , Linfócitos T CD4-Positivos/metabolismo , Substância Cinzenta/patologia , Esclerose Múltipla/patologia , Receptores de Interleucina-8B/metabolismo , Animais , Astrócitos/metabolismo , Linfócitos T CD4-Positivos/patologia , Quimiocina CXCL1/metabolismo , Quimiocina CXCL5/metabolismo , Quimiocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Feminino , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Corno Ventral da Medula Espinal/patologia , Imagem com Lapso de Tempo
11.
J Neurochem ; 152(6): 697-709, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31782806

RESUMO

Systemic inflammation can exacerbate symptoms of many neurological diseases. This effect may be facilitated by glial cells of the central nervous system (CNS) that alter their transcriptional responses and up-regulate cytokine and chemokine expression which can, in turn trigger immune surveillance. In this study, we sought to determine the effects of pro-inflammatory cytokine stimulation (TNF, IL-1α, IL-1ß) on astrocyte and microglia chemokine secretion. Primary cultures of astrocytes or microglia were stimulated with the recombinant cytokines and the levels of secreted chemokines were semi-quantitatively determined using a chemokine-specific proteome profiler array and densitometry. Pharmacological inhibitors were used to determine the effects of p38 MAPK, JNK, ERK1/2, NFkB, and transforming growth factor beta-associated kinase 1 (TAK1) in controlling chemokine production. Finally, neutrophil migration assays were performed to demonstrate functionality. Our data show that stimulated astrocytes secrete at least eight chemokines as a response to cytokine stimulation. These include those involved in neutrophil chemo-attraction and proved capable of promoting neutrophil migration in vitro. In contrast, microglia up-regulated few chemokines in response to cytokine stimulation and did not promote neutrophil migration. However, microglia readily secreted chemokines following stimulation with the toll-like receptor agonists. Finally, we show that both the production of chemokines and neutrophil migration resulting from cytokine stimulation of astrocytes was dependent on TAK1 signaling. Collectively, this study adds to the understanding of how astrocytes and microglia respond to stimuli and their role in promoting neutrophil migration to the CNS during inflammatory conditions.


Assuntos
Astrócitos/fisiologia , Movimento Celular/fisiologia , Quimiocinas/metabolismo , Citocinas/farmacologia , MAP Quinase Quinase Quinases/fisiologia , Animais , Astrócitos/enzimologia , Células Cultivadas , Quimiocinas/análise , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Feminino , Inflamação/fisiopatologia , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/fisiologia , Neutrófilos/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...